
SIMULATION OF THE HEAT TRANSFER
FROM A LINEAR PULSED-HEAT SOURCE
IN THERMOPHYSICAL MEASUREMENTS

N. P. Zhukov UDC 53.08.001.57

The process of heat transfer from a linear pulsed-heat source in a semibounded body has been investigated.
A nondestructive method of determining the thermophysical parameters of a material by the working portion
of its thermogram, which allows one to substantially decrease the measurement error, has been developed.
Since the model developed is linear by the parameters used, it allows one to estimate, using classical statis-
tical methods, the random error in measuring the thermophysical parameters of materials.

Methods of determining the thermophysical parameters of a material with the use of a pulsed-heat source gen-
erating a directed heat flux and, consequently, a nonstationary temperature perturbation in a small region of a sample
have considerable technical possibilities since they allow one to independently determine two thermophysical parame-
ters of the material [1, 2]. These methods also call for simple facilities for their technical realization and a short ex-
perimental time [3–6]. However, the indicated methods should be further improved since, in them, the thermophysical
parameters of a material are determined on the basis of the data of indirect experiments with the use of definite
mathematical models. Because of this, the exactness and reliability of the thermophysical parameters of a material de-
termined with the use of these models depend, by and large, on the correctness of the mathematical description of the
thermal processes occurring in the material in the process of measurements. In the present work, we considered the
theoretical basis of the method of nondestructive control of the thermophysical parameters of materials with the use of
a model of nonstationary heat transfer from a linear pulsed-heat source operating on a heat-insulated surface of a semi-
bounded body. In an experiment, the temperature of a material is measured at a point offset by a certain distance from
the heat source.

The temperature field formed by a single heat pulse in the material of a semibounded body (Fig. 1) is defined
[5, 6] as

T (r, τ) = 
Q

2πλτ
 exp 




− 

r
2

4aτ



 . (1)

If a sequence of n + 1 heat pulses is supplied with a period ∆τ, the temperature field in the sample is deter-
mined from the equation

Tp (r, τ) = 
Q

2πλ
  ∑ 

i=1

n

 

exp 



− 

r
2

4a (τ − (i − 1) ∆τ)




τ − (i − 1) ∆τ
 ,   (n − 1) ∆τ ≤ τ ≤ n∆τ , (2)

that is little suitable for calculating its thermophysical parameters.
If the power of heating q of a semibounded medium is constant, the temperature field in it is defined [5] as
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Ts (r, τ) = 
q

2πλ
    ∫ 

r
2 ⁄ (4aτ)

∞

  
exp [− u]

u
 du = 

q
2πλ

   ∫ 
0

4aτ ⁄ r
2

  
exp [− 1 ⁄ u]

u
 du . (3)

On condition that

q = 
Q
∆τ

(4)

it may be assumed (at large τ) that a pulsed-heat source has a constant power (Fig. 2).
In practice, the action of a heat source is not instantaneous. A heater with a power q0 per unit of its length

acts for a time τ0 (Fig. 3).
The power of a heater is a periodic time function, i.e.,

q (τ) = 




q0 ,
0 ,

     
0 ≤ τ ≤ τ0 ,

τ0 < τ < ∆τ ,
     q (τ + n∆τ) = q (τ) . (5)

In this case, condition (4) has the form

q = 
q0τ0

∆τ
 . (6)

Using the source method [5, 6], we will write a formula for determining the temperature field formed in a
semispace by a linear heat source supplied with power by an arbitrary law:

T (r, τ) = 
1

2πλ
 ∫ 
0

τ
q (u) exp 




− 

r
2

4a (τ − u)




τ − u
 du . (7)

The dependence q(τ) determined from (5) is a periodic function with a period ∆τ that can be expanded into the
Fourier series:

q (τ) = 
q0τ0

∆τ
 + 

q0τ0

∆τπ
  ∑ 

k=1

∞

 
1

k
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
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
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
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
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


 . (8)

Substituting (8) into formula (7), we obtain the following relation:

Fig. 1. Dependence T(τ) in the case of action by a single pulse.

Fig. 2. Dependence T(τ) in the case where condition (4) is fulfilled and a heat
source of constant power (curve 1) or a pulsed-heat source (curve 2) act.
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Tp (r, τ) = 
q0τ0

2πλ∆τ
   ∫ 

0

4aτ ⁄ r
2
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u
 du + 

+ 
q0

2π2λ
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

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
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4a (τ − u)



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







  . (9)

From (9), we can obtain an expression, identical to (2), for the temperature field formed by an instantaneous pulsed-
heat source.

Decreasing the pulse duration τ0 and simultaneously increasing the power q0 so that q0τ0 = Q and taking into
account the fact that, in the limit,

  lim
τ0→ 0
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






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



2kπτ0

∆τ




τ0








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
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

  → 0 ,

we obtain

Tp (r, τ) = 
Q

2πλ∆τ
   ∫ 

0

4aτ ⁄ r
2

  
exp [− 1 ⁄ u]

u
 du + 

Q
πλ∆τ

  ∑ 

k=1

∞

 ∫ 
0
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



2kπu
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


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


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r
2

4a (τ − u)




τ − u
 du . (10)

The sums in the right side of expressions (9) and (10) represent bounded and periodic functions of τ [7–10]. At large

τ 







   ∫ 

0

4aτ ⁄ r
2

  
exp [−1 ⁄ u]

u
 du is a monotonically increasing function; as τ → ∞,    ∫ 

0

4aτ ⁄ r
2

  
exp [−1 ⁄ u]

u
 du → ∞







 these sums can be

disregarded, i.e., since q = q0τ0
 ⁄ ∆τ and q = Q/∆τ, it may be assumed that

Tp (r, τ) C Ts (r, τ) = 
q

2πλ
   ∫ 

r
2 ⁄ 4aτ

∞

  
exp [− u]

u
 du .

Let us analyze Eq. (3). It is known [7] that

Fig. 3. Power of a pulsed-heat source.
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− ∫ 
x

∞
exp [− u]

u
 du  = ln [x] + γ +  ∑ 

k=1

∞

 
(− 1)k

 x
k

k⋅k!
 .

Using this expression, we write

Ts (r, τ) = 
q

2πλ
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






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



4aτ

r
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
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
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r
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4aτ


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k
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











(11)

and, at large τ (Fig. 4),

Ts (r, τ) C 
q

2πλ
 



ln 





4aτ

r
2




 − γ




 = 

q

2πλ
 



ln [τ] + ln [a] − ln 





r
2

4




 − γ




 . (12)

The dynamics of a thermal process will be characterized by the input action (law of power supply to a
heater), the output variable T(τ), and the system-state variable (as which the heat flux passing through the measure-
ment point can be used). In the general case, three portions can be separated on a thermogram (Fig. 5): I) the heat
flux passing through the measurement point changes with time depending on the initial stage of the thermal process;
II) the heat fluxes are controlled and are made practically constant; relation (12) is true here, and it will be true also
in the case where measurements are performed with account for the actual sizes and heat capacities of the heater and
the temperature detectors; III) the sample studied becomes bounded and the heat flux passing through the measurement
point becomes variable.

Thus, expression (12) can be used for calculating (working) portion II of the thermogram (Figs. 5 and 6).
Since the temperature is measured within certain time intervals ∆τ, i.e., τ = n∆τ, where n = 1, 2, 3, ..., expression (12)
can be written in the form

T (tlin) = 
q

2πλ
 



tlin + ln [a] − ln 





r
2

4∆τ



 − γ




 . (13)

The main expression for calculating the thermophysical parameters of a material is expression (13). To use
this expression, it is necessary to know the regime (q, ∆τ) and design (r) features of the apparatus used for measure-
ments. Therefore, these quantities can be taken as constants of the apparatus under definite experimental conditions.
Their values are determined from the calibration experiments (it will suffice to have one sample with known thermo-
physical parameters).

Fig. 4. Dependence Ts = f(ln [τ]).

Fig. 5. Portions of the thermogram measured for the Ripor-type polyurethane
foam.
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For the purpose of calculating the thermophysical properties of a material by experimental data, we write ex-
pression (13) in the following form:

T (tlin) = b1tlin + b0 , (14)

where b1 = 
α
λ

 and b0 = 
α
λ

 (ln a  − β) are parameters of the model describing the working portion of the thermogram

and α = 
q

2π
 and β = ln 





r2

4∆τ



 + γ are constants of the apparatus used that are determined by its design features and

the experimental conditions.
The thermophysical parameters of the material and the apparatus constants are calculated using the expressions

α = λstb1st , (15)

β = ln [ast] − 
b0st

b1st
 , (16)

λ = 
α
b1

 , (17)

a = exp 




b0

b1
 + β




 . (18)

Thus, we have proposed a method for determining the boundaries of thermogram portions I–III and the coefficients of
Eq. (14) [11].

The model developed with account for different regimes of operation of a measuring system allows one to de-
termine a complex of thermophysical properties of a material — heat conduction and thermal diffusivity. In the case
where the thermophysical parameters of a material are determined on the basis of experimental data with the use of
dependence (13), the systematic measurement error can be substantially decreased. Since thermophysical parameters of
a material are determined by a portion of its thermogram and not by individual points, the influence of the random
measurement errors is small. This is especially important for composite materials. In the case of measurement of such
a material, the error caused by the difference between the local and mean values of its thermophysical parameters is
added to the random error. Since model (13) is linear by its parameters, the random error in measuring the thermo-
physical parameters of a material in an individual experiment can be estimated using classical statistical methods.

Fig. 6. Second portion of the thermogram.

505



In the method proposed for control of the thermophysical parameters of a material, the random error in meas-
uring the heat conduction and thermal diffusivity is determined, in accordance with the computational procedure de-
scribed in [11], by the following equations:

δλ = √δ2α + δ2b1  , (19)

δa = √(δ2
b0 + δ2

b1) 




b0
b1





2

 + ∆2β  , (20)

δα = √ δ2λst + δ2b1st  , (21)

∆β = √δ2
ast + (δ2

b0st + δ2
b1st) 





b0st

b1st





2

 . (22)

According to the computational procedure used, we first found the differentials of the left and right sides of
Eqs. (15)–(18). Then we made substitutions used in the theory of errors: dλ C ∆λ, dα C ∆α, db1 C ∆b1, da C ∆a,
db0 C ∆b0, db0st C ∆b0st, db1st C ∆b1st, and dast C ∆ast, where ∆λ, ∆α, ∆b1, ∆a, ∆b0, ∆b0st, ∆b1st, and ∆ast are the ab-
solute errors in determining λ, α, b1, a, b0, b0st, b1st, and ast. The relative errors are determined with account for these
substitutions: δα = ∆α ⁄ α, δb1 = ∆b1

 ⁄ b1, etc.
Let us now analyze dependences (19)–(22), obtained from formulas (15)–(18) with the use of the above-de-

scribed computational procedure, for the purpose of determining the range of measurement of the thermophysical pa-
rameters of a material and ways of widening it. It should be noted first of all that the error in calculating the
apparatus constants is determined by the error in determining the thermophysical parameters of a standard. The abso-
lute error in determining the coefficients b0 and b1 can be assumed to be constant in the first approximation since it
will be determined by the error in measuring the temperature (which can be assumed to be constant from experiment
to experiment). Then, from expression (19) we find

 δλ = √δ2α + 
∆2b1λ2

α2  . (23)

As is seen from Eq. (23), the relative error δλ depends on λ (Fig. 7) and increases with increase in the heat conduc-
tion of the material. It also follows from expression (23) that this error can be decreased by increasing the coefficient

Fig. 7. Dependence δλ = f(λ) calculated by formula (23).
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α. This can be done by increasing the amount of heat released by a heater, the pulse duration, and the heater power
(α D q).

Let us consider formula (20). From it we obtain, taking into account (17) and (18), that

 δa = √(∆2
b0 + ∆2

b1 (ln (a) − β)2) λ
2

α2 + ∆2β  . (24)

It is seen from expression (24) that the relative error in determining the thermal diffusivity δa is dependent on a and
λ of the sample (Fig. 8); in this case, the heat-conduction coefficient λ is a determining factor, an increase in which
leads to an increase in the relative error in measuring the thermal diffusivity δa. It follows from Eq. (24) that the rela-
tive error in measuring a can be decreased by increasing the apparatus constant α. Using expressions (23) and (24),
one can estimate the error in determining the thermophysical parameters of a material by the range of their change.
Figures 7 and 8 present results of such an estimation.

Along with the random error in determining the thermophysical parameters of a material, of interest is the
systematic error caused by the inaccuracy of the mathematical model. We now consider the influence of the main sys-
tematic errors on the accuracy of determining the thermophysical parameters of the materials studied by the method
developed.

Systematic errors are caused first of all by the following factors: (a) an actual heater has finite dimensions
and a heat capacity, (b) between the heater and the sample as well as between the sample and the temperature detec-
tors there are thermal resistances, (c) a portion of the heat released by the heater is expended in heating the material
of a probe.

To determine the influence of the finiteness of the heater dimensions on the accuracy of determining the ther-
mophysical properties of a material, we will consider (1) a heater shaped as a cylinder of radius R, through whose sur-
face the heat flux q

_
0 is supplied to the material, (Fig. 9I) and (2) a heater having the form of a strip of width 2h,

through which the heat flux q
_

0 is supplied to the material (Fig. 9II).
For the heater of finite dimensions shaped as a cylinder with a radius R, through whose surface the heat flux

q
_

0 is supplied to the material (Fig. 9I), the problem is solved in the general case [5] in the following way:

T (r, τ) = − 
2q

_
0

πλ
 ∫ 
0

∞

 1 − exp [− au

2τ]  
J0 (ur) Y1 (uR) − Y0 (ur) J1 (uR)

u
2
 [J0

2
 (uR) + Y1

2
 (uR)]

 du . (25)

At large τ, this expression becomes simpler and has the form [4]

T (r, τ) = 
q
_

0R

2λ
 



ln 





4aτ

r
2




 − γ




 , (26)

Fig. 8. Dependence δa = f(λ, a) calculated by formula (24).
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Rewriting (26) in terms of the power per unit heater length (q0 = q
_

0πR, see Fig. 9I), we obtain expression (13).
We now consider a heater of finite dimensions having the form of a strip, through which the heat flux q

_
0 is

supplied to the material (Fig. 9II). The temperature T at the point with coordinates (x, 0) on the surface of the material
studied at the instant of time τ will be determined from the expression [5]

T (x, 0, τ) = 
q
_

0hFo
0.5

π0.5λ
 



erf 





h + x

2hFo
0.5




 + erf 





h − x

2hFo
0.5




 −

− 
h + x

2h (πFo)0.5 Ei 



− 

(h + x)2

4h
2
Fo




 − 

h − x

2h (πFo)0.5
 Ei 




− 

(h − x)2

4h
2
Fo














 . (27)

Using the known relations [7, 8]

erf [x] = 
2

√π
  ∑ 

n=0

∞

 (− 1)n
 

x
2n+1

n! (2n + 1)
 , (28)

Ei [− x] = γ + ln (x) +  ∑ 

n=1

∞

 
(− x)n

n⋅n!
 , (29)

we obtain an expression for the surface temperature z = 0 at the point with an x coordinate at large τ:

T (x, 0, τ) = 
q
_

0h

λπ
 



ln (4aτ) − 

h + x
2h

 ln (h + x)2
 − 

h − x
2h

 ln (h − x)2
 + 2 − γ




 . (30)

Rewriting (30) in terms of the power per unit heater length (q0 = q
_

02h, Fig. 9), we obtain

T (x, 0, τ) = 
q0

2πλ
 



ln (4aτ) − 

h + x
2h

 ln (h + x)2
 − 

h − x
2h

 ln (h − x)2
 + 2 − γ




 . (31)

A more comprehensive analysis of expressions (13) and (31) has shown that they are different. Note also that

 lim
h→ 0

 




h + x
2h

 ln (h + x)2
 − 

h − x
2h

 ln (h − x)2



 =

= lim
h→ 0

 










h

2h
 ln  (h + x)2

 (h − x)2
  + 

x

2h
 ln 





(h + x)2

(h − x)2





2








 = ln (x2) − 2 .

Fig. 9. Diagrams of heaters in the form of a cylinder (I) and a strip (II).
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Therefore, on condition that x >> h, expression (31) takes the form of formula (13), which can be represented as

T (r, τ) = 
q0

2πλ
 (ln (4aτ) − ln (r2) − γ) . (32)

In this case, (31) and (32) can be written in the unique form

T (r, τ) = T (x, 0, τ) = 
q0

2πλ
 [ln (4aτ) − C (r (or  x))] , (33)

where C(r (or x)) is a quantity independent of time and the thermophysical parameters of the material studied; it is
completely determined by the design features of the probe and represents, in essence, an apparatus constant.

In the method developed, the apparatus constants are determined from calibration experiments carried out with
samples whose thermophysical properties are known. In this case, a sample studied is calibrated and its thermophysical
parameters are determined by the portion of the thermogram where the temperature-time dependence of the form of
(13) is fulfilled.

The foregoing allows us to suggest that the systematic error caused by the finiteness of the heater dimensions
does not influence the accuracy of determining the thermophysical properties of a material. As was mentioned above,
the systematic error in measuring the thermophysical parameters of a material can be partially estimated in the case
where these parameters are determined on the basis of the data of calibration experiments (see (31)–(33)).

Since an actual heater has a heat capacity, a portion of the heat released by it will be expended in heating a
sample, i.e., the power supplied to the sample will be equal to q0 − q0

′  and not to q0. Let us assume that a heater in
the form of an infinite cylinder of radius R represents a perfect conductor. In this case, q0

′  will be equal to

q0
′  = Ch 

∂T (R, τ)
∂τ

 . (34)

In the first approximation, T(R, τ) can be determined from expression (13) at r = R. The change in the tem-
perature at the point with an r coordinate is determined from the relation

T (r, τ) = 
q0 − q0

′

2πλ
 



ln 





4aτ

r
2




 − γ




 = 

q0 − Ch 
q0

2πλτ

2πλ
 



ln 





4aτ

r
2




 − γ





(35)

or

T (r, τ) = 
q0

2πλ
 



ln 





4aτ

r
2




 − γ




 − 

Chq0

4π2λ2 










ln [τ]

τ
 + 

ln 




4a

r
2




 − γ

τ









  . (36)

It is seen from formula (36) that the influence of the heat capacity of the heater will decrease with time since

lim
τ→∞

 




ln [τ]
τ




 → 0 and lim

τ→∞
 











ln 


4a

r2



 − γ

τ









  → 0. In this case, the heat capacity of the heater can be disregarded (see (35))

on condition that

Ch

2πλτ
 << 1 . (37)
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It is seen from expressions (35) and (36) that, in the case where the heat capacity of the heater significantly
influences the thermal process, the time dependence of the temperature at the measurement point (thermogram) will
differ from expressions (13) and (33). Only the thermogram points at which these functional dependences are fulfilled
are taken into account in the method proposed. This allows the conclusion that the heat capacity of the heater in the
computational region of the thermogram does not influence the accuracy of determining the thermophysical properties
of a material. This can be analogously demonstrated for a heater in the form of a strip and for heat detectors.

Thus, the finiteness of the heater dimensions does not influence the accuracy of determining the thermophysi-
cal properties of a material in the case where the apparatus constants are determined by the data of calibration experi-
ments. The heat capacity of the heater in the computational region of the thermogram also does not influence the
accuracy of determining the thermophysical properties of a material.

NOTATION

a and ast, thermal diffusivity of the material studied and the standard, m2/sec; b0, b1, and b0st, b1st, coeffi-
cients determined by the thermograms measured for the material studied and the standard; Ch, heat capacity of the
heater unit length, J/(kg⋅K⋅m); Fo, Fourier number; J0, J1, Y0, Y1, Bessel functions; 2h, width of the strip, m; n, num-
ber of a thermogram point; Q, quantity of heat released per unit heater length, J/m; q, q0, power per unit heater
length, W/m; q0

′ , power expended in heating the heater, W/m; q
_

0, heat-flux density, W/m2; R, radius of the heater, m;
r, x, z, coordinates, m; T, excess temperature, oC; Tp, temperature in the case of pulsed heating, oC; Ts, temperature
in the case of heating with a constant power, oC; tlin = ln [n]; i = 1, 2, 3, ..., n; k = 1, 2, 3, ...; u, integration pa-
rameter; α, β, C, constants of the apparatus determined by its design features and experimental conditions; γ C 0.5772,
Euler number; δ, relative error; ∆, absolute error; ∆τ, time period, sec; τ, time, sec; τ0, pulse duration, sec; λ and
λst, heat-conductivity coefficients of the material studied and the standard, W/(m⋅K). Subscripts: p, pulse; lin, linear; h,
heater; st, standard; s, stationary.
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